Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prof Case Manag ; 28(6): 271-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787704

RESUMO

PURPOSE OF STUDY: Hospital readmissions burden the U.S. health care system, and they have negative effects on patients and their families. The primary aim of this study was to pilot an intensive case management (ICM) intervention to reduce 30-day hospital readmissions. A secondary aim was to obtain patient- and caregiver-reported reasons for readmission. PRIMARY PRACTICE SETTING: The setting was a vertically integrated health care system located in Northern California. METHODOLOGY AND SAMPLE: This pilot quality improvement project occurred over a 4-month period. The intervention was delivered by master's degree students in nurse case management through an academic-clinical partnership. Patients hospitalized with a 30-day readmission were offered the ICM intervention. A total of 36 patients were identified and 20 accepted. Patient and/or caregiver was interviewed to identify reasons for their readmission. Data were collected about pre-/post-health care utilization including subsequent 30-day readmission. Mixed methods were used to analyze the findings. RESULTS: Thirteen of 20 enrolled patients received the weekly ICM intervention for at least 30 days. Seven declined further contact before 30 days. Patient-reported reasons for readmission included being discharged too soon, poor communication among providers and with patients/families, lack of understanding about disease management and/or treatment options, and inadequate support. Several patients believed that their readmission was unavoidable due to the complexity of their illnesses. We compared 30-day readmissions for those who participated in and those who declined the ICM intervention, finding that those who received the ICM intervention had a lower readmission rate than those who did not receive the intervention (35% vs. 37.5%).


Assuntos
Administração de Caso , Readmissão do Paciente , Humanos , Melhoria de Qualidade , Alta do Paciente
2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37008729

RESUMO

Many ant species are equipped with chemical defenses, although how these compounds impact nervous system function is unclear. Here, we examined the utility of Caenorhabditis elegans chemotaxis assays for investigating how ant chemical defense compounds are detected by heterospecific nervous systems. We found that C. elegans respond to extracts from the invasive Argentine Ant ( Linepithema humile ) and the osm-9 ion channel is required for this response. Divergent strains varied in their response to L. humile extracts, suggesting genetic variation underlying chemotactic responses. These experiments were conducted by an undergraduate laboratory course, highlighting how C. elegans chemotaxis assays in a classroom setting can provide genuine research experiences and reveal new insights into interspecies interactions.

3.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-36824381

RESUMO

Tadpoles display preferences for different environments but the sensory modalities that govern these choices are not well understood. Here, we examined light preferences and associated sensory mechanisms of albino and wild-type Xenopus laevis tadpoles. We found that albino tadpoles spent more time in darker environments compared to the wild type, although they showed no differences in overall activity. This preference persisted when the tadpoles had their optic nerve severed or pineal glands removed, suggesting these sensory systems alone are not necessary for phototaxis. These experiments were conducted by an undergraduate laboratory course, highlighting how X. laevis tadpole behavior assays in a classroom setting can reveal new insights into animal behavior.

4.
Am J Physiol Renal Physiol ; 319(4): F712-F728, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893663

RESUMO

Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.


Assuntos
Compostos Benzidrílicos/farmacologia , Diabetes Mellitus/tratamento farmacológico , Glucosídeos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Natriurese/efeitos dos fármacos , Natriuréticos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Equilíbrio Ácido-Base/efeitos dos fármacos , Animais , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatologia , Modelos Animais de Doenças , Glicosúria/metabolismo , Glicosúria/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Trocador 3 de Sódio-Hidrogênio/deficiência , Trocador 3 de Sódio-Hidrogênio/genética
5.
Am J Physiol Renal Physiol ; 318(5): F1100-F1112, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32116018

RESUMO

In the early proximal tubule, Na+-glucose cotransporter 2 (SGLT2) mediates the bulk of renal glucose reabsorption. Gene deletion in mice (Sglt2-/-) was used to determine the role of SGLT2 in acute kidney injury induced by bilateral ischemia-reperfusion (IR). In Sglt2-/- and littermate wild-type mice, plasma creatinine increased similarly on day 1 after IR. This was associated with an equal increase in both genotypes in the urinary kidney injury molecule-1-to-creatinine ratio, a tubular injury marker, and similarly reduced urine osmolality and increased plasma osmolality, indicating impaired urine concentration. In both IR groups, FITC-sinistrin glomerular filtration rate was equally reduced on day 14, and plasma creatinine was similarly and incompletely restored on day 23. In Sglt2-/- mice subjected to IR, fractional urinary glucose excretion was increased on day 1 but reduced and associated with normal renal Na+-glucose cotransporter 1 (Sglt1) mRNA expression on day 23, suggesting temporary SGLT1 suppression. In wild-type mice subjected to IR, renal Sglt1 mRNA was likewise normal on day 23, whereas Sglt2 mRNA was reduced by 57%. In both genotypes, IR equally reduced urine osmolality and renal mRNA expression of the Na+-K+-2Cl- cotransporter and renin on day 23, suggesting thick ascending limb dysfunction, and similarly increased renal mRNA expression of markers of injury, inflammation, oxidative stress, and fibrosis (kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, monocyte chemoattractant protein-1, transforming growth factor-ß1, NADPH oxidase-2, and collagen type 1). This was associated with equal increases in kidney histological damage scores and similar degree of capillary loss in both genotypes. The data indicate that genetic deletion of SGLT2 did not protect the kidneys in the initial injury phase or the subsequent recovery phase in a mouse model of IR-induced acute kidney injury.


Assuntos
Injúria Renal Aguda/metabolismo , Glicemia/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/metabolismo , Transportador 2 de Glucose-Sódio/deficiência , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Taxa de Filtração Glomerular , Rim/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eliminação Renal , Reabsorção Renal , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transportador 2 de Glucose-Sódio/genética , Fatores de Tempo
6.
Am J Physiol Renal Physiol ; 317(2): F419-F434, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166707

RESUMO

Na+/H+ exchanger isoform 3 (NHE3) contributes to Na+/bicarbonate reabsorption and ammonium secretion in early proximal tubules. To determine its role in the diabetic kidney, type 1 diabetic Akita mice with tubular NHE3 knockdown [Pax8-Cre; NHE3-knockout (KO) mice] were generated. NHE3-KO mice had higher urine pH, more bicarbonaturia, and compensating increases in renal mRNA expression for genes associated with generation of ammonium, bicarbonate, and glucose (phosphoenolpyruvate carboxykinase) in proximal tubules and H+ and ammonia secretion and glycolysis in distal tubules. This left blood pH and bicarbonate unaffected in nondiabetic and diabetic NHE3-KO versus wild-type mice but was associated with renal upregulation of proinflammatory markers. Higher renal phosphoenolpyruvate carboxykinase expression in NHE3-KO mice was associated with lower Na+-glucose cotransporter (SGLT)2 and higher SGLT1 expression, indicating a downward tubular shift in Na+ and glucose reabsorption. NHE3-KO was associated with lesser kidney weight and glomerular filtration rate (GFR) independent of diabetes and prevented diabetes-associated albuminuria. NHE3-KO, however, did not attenuate hyperglycemia or prevent diabetes from increasing kidney weight and GFR. Higher renal gluconeogenesis may explain similar hyperglycemia despite lower SGLT2 expression and higher glucosuria in diabetic NHE3-KO versus wild-type mice; stronger SGLT1 engagement could have affected kidney weight and GFR responses. Chronic kidney disease in humans is associated with reduced urinary excretion of metabolites of branched-chain amino acids and the tricarboxylic acid cycle, a pattern mimicked in diabetic wild-type mice. This pattern was reversed in nondiabetic NHE3-KO mice, possibly reflecting branched-chain amino acids use for ammoniagenesis and tricarboxylic acid cycle upregulation to support formation of ammonia, bicarbonate, and glucose in proximal tubule. NHE3-KO, however, did not prevent the diabetes-induced urinary downregulation in these metabolites.


Assuntos
Equilíbrio Ácido-Base , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/metabolismo , Túbulos Renais/metabolismo , Reabsorção Renal , Trocador 3 de Sódio-Hidrogênio/deficiência , Sódio/urina , Equilíbrio Ácido-Base/genética , Aminoácidos de Cadeia Ramificada/urina , Amônia/urina , Animais , Bicarbonatos/urina , Biomarcadores/urina , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/urina , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Nefropatias Diabéticas/urina , Modelos Animais de Doenças , Metabolismo Energético/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Concentração de Íons de Hidrogênio , Túbulos Renais/fisiopatologia , Masculino , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Trocador 3 de Sódio-Hidrogênio/genética
7.
Am J Physiol Renal Physiol ; 317(1): F207-F217, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091127

RESUMO

Na+-glucose cotransporter (SGLT)1 mediates glucose reabsorption in late proximal tubules. SGLT1 also mediates macula densa (MD) sensing of an increase in luminal glucose, which increases nitric oxide (NO) synthase 1 (MD-NOS1)-mediated NO formation and potentially glomerular filtratrion rate (GFR). Here, the contribution of SGLT1 was tested by gene knockout (-/-) in type 1 diabetic Akita mice. A low-glucose diet was used to prevent intestinal malabsorption in Sglt1-/- mice and minimize the contribution of intestinal SGLT1. Hyperglycemia was modestly reduced in Sglt1-/- versus littermate wild-type Akita mice (480 vs. 550 mg/dl), associated with reduced diabetes-induced increases in GFR, kidney weight, glomerular size, and albuminuria. Blunted hyperfiltration was confirmed in streptozotocin-induced diabetic Sglt1-/- mice, associated with similar hyperglycemia versus wild-type mice (350 vs. 385 mg/dl). Absence of SGLT1 attenuated upregulation of MD-NOS1 protein expression in diabetic Akita mice and in response to SGLT2 inhibition in nondiabetic mice. During SGLT2 inhibition in Akita mice, Sglt1-/- mice had likewise reduced blood glucose (200 vs. 300 mg/dl), associated with lesser MD-NOS1 expression, GFR, kidney weight, glomerular size, and albuminuria. Absence of Sglt1 in Akita mice increased systolic blood pressure, associated with suppressed renal renin mRNA expression. This may reflect fluid retention due to blunted hyperfiltration. SGLT2 inhibition prevented the blood pressure increase in Sglt1-/- Akita mice, possibly due to additive glucosuric/diuretic effects. The data indicate that SGLT1 contributes to diabetic hyperfiltration and limits diabetic hypertension. Potential mechanisms include its role in glucose-driven upregulation of MD-NOS1 expression. This pathway may increase GFR to maintain volume balance when enhanced MD glucose delivery indicates upstream saturation of SGLTs and thus hyperreabsorption.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Tipo 1/enzimologia , Nefropatias Diabéticas/enzimologia , Taxa de Filtração Glomerular , Rim/enzimologia , Óxido Nítrico Sintase Tipo I/metabolismo , Transportador 1 de Glucose-Sódio/deficiência , Albuminúria/enzimologia , Albuminúria/genética , Albuminúria/fisiopatologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Pressão Sanguínea , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/fisiopatologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Óxido Nítrico Sintase Tipo I/genética , Reabsorção Renal , Renina/sangue , Renina/genética , Transdução de Sinais , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Regulação para Cima
8.
Am J Physiol Renal Physiol ; 316(6): F1201-F1210, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995111

RESUMO

Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.


Assuntos
Injúria Renal Aguda/metabolismo , Taxa de Filtração Glomerular , Glucose/metabolismo , Túbulos Renais Proximais/metabolismo , Reabsorção Renal , Traumatismo por Reperfusão/metabolismo , Transportador 1 de Glucose-Sódio/deficiência , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Modelos Animais de Doenças , Deleção de Genes , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Recuperação de Função Fisiológica , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Fatores de Tempo
9.
Am J Physiol Renal Physiol ; 316(1): F173-F185, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427222

RESUMO

Inhibitors of the Na+-glucose cotransporter SGLT2 enhance urinary glucose and urate excretion and lower plasma urate levels. The mechanisms remain unclear, but a role for enhanced glucose in the tubular fluid, which may interact with tubular urate transporters, such as the glucose transporter GLUT9 or the urate transporter URAT1, has been proposed. Studies were performed in nondiabetic mice treated with the SGLT2 inhibitor canagliflozin and in gene-targeted mice lacking the urate transporter Glut9 in the tubule or in mice with whole body knockout of Sglt2, Sglt1, or Urat1. Renal urate handling was assessed by analysis of urate in spontaneous plasma and urine samples and normalization to creatinine concentrations or by renal clearance studies with assessment of glomerular filtration rate by FITC-sinistrin. The experiments confirmed the contribution of URAT1 and GLUT9 to renal urate reabsorption, showing a greater contribution of the latter and additive effects. Genetic and pharmacological inhibition of SGLT2 enhanced fractional renal urate excretion (FE-urate), indicating that a direct effect of the SGLT2 inhibitor on urate transporters is not absolutely necessary. Consistent with a proposed role of increased luminal glucose delivery, the absence of Sglt1, which by itself had no effect on FE-urate, enhanced the glycosuric and uricosuric effects of the SGLT2 inhibitor. The SGLT2 inhibitor enhanced renal mRNA expression of Glut9 in wild-type mice, but tubular GLUT9 seemed dispensable for the increase in FE-urate in response to canagliflozin. First evidence is presented that URAT1 is required for the acute uricosuric effect of the SGLT2 inhibitor in mice.


Assuntos
Canagliflozina/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Transportadores de Ânions Orgânicos/metabolismo , Eliminação Renal/efeitos dos fármacos , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Ácido Úrico/urina , Uricosúricos/farmacologia , Animais , Genótipo , Proteínas Facilitadoras de Transporte de Glucose/deficiência , Proteínas Facilitadoras de Transporte de Glucose/genética , Túbulos Renais Proximais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transportadores de Ânions Orgânicos/deficiência , Transportadores de Ânions Orgânicos/genética , Fenótipo , Reabsorção Renal/efeitos dos fármacos , Transportador 2 de Glucose-Sódio/deficiência , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
10.
Am J Physiol Renal Physiol ; 315(2): F386-F394, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29412698

RESUMO

The sodium-glucose cotransporter SGLT2 inhibitor empagliflozin (plasma protein binding ~88%) may reach its target in the brush border of the early proximal tubule by glomerular filtration and tubular secretion. Here we determined whether empagliflozin is secreted by renal tubules in mice and whether genetic knockout of the basolateral organic anion transporter 3 ( Oat3-/-) affects its tubular secretion or glucosuric effect. Renal clearance studies in wild-type (WT) mice showed that tubular secretion accounted for 50-70% of empagliflozin urinary excretion. Immunostaining indicated that SGLT2 and OAT3 localization partially overlapped in proximal tubule S1 and S2 segments. Glucosuria in metabolic cage studies was reduced in Oat3-/- vs. WT mice for acute empagliflozin doses of 1, 3, and 10 mg/kg, whereas 30 mg/kg induced similar maximal glucosuria in both genotypes. Chronic application of empagliflozin (~25 mg·kg-1 ·day-1) in Oat3-/- mice was associated with lower urinary glucose-to-creatinine ratios despite maintaining slightly higher blood glucose levels than WT. On a whole kidney level, renal secretion of empagliflozin was largely unchanged in Oat3-/- mice. However, the absence of OAT3 attenuated the influence of empagliflozin on fractional glucose excretion; higher levels of plasma or filtered empagliflozin were needed to induce similar increases in fractional renal glucose excretion. We conclude that empagliflozin is excreted into the urine to similar extent by glomerular filtration and tubular secretion. The latter can occur largely independent of OAT3. However, OAT3 increases the glucosuric effect of empagliflozin, which may relate to the partial overlap of its localization with SGLT2 and thus OAT3-mediated tubular secretion of empagliflozin in the early proximal tubule.


Assuntos
Compostos Benzidrílicos/farmacologia , Glicemia/efeitos dos fármacos , Glucosídeos/farmacologia , Glicosúria/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Eliminação Renal , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/efeitos dos fármacos , Animais , Compostos Benzidrílicos/farmacocinética , Compostos Benzidrílicos/urina , Glicemia/metabolismo , Taxa de Filtração Glomerular , Glucosídeos/farmacocinética , Glucosídeos/urina , Glicosúria/genética , Glicosúria/prevenção & controle , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 1 Transportadora de Ânions Orgânicos/genética , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacocinética , Inibidores do Transportador 2 de Sódio-Glicose/urina
11.
J Public Health Policy ; 30 Suppl 1: S203-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19190574

RESUMO

Active commuting (non-motorized transport) to school can be an important source of physical activity for children and adolescents. This research examined sociodemographic, family, and environmental characteristics associated with active commuting to or from school among 3,451 US adolescents aged 12-17 years, who responded to the 2005 California Health Interview Survey. Logistic regression results indicated that those more likely to actively commute were males, Latinos, from lower-income families, attending public school, living in urban areas, and living closer to school. Adolescents without an adult present after school and those whose parents know little about their whereabouts after school were also more likely to actively commute. Parental walking for transportation and perceptions of neighborhood safety were not associated with adolescent active commuting. Important family and individual correlates of walking or biking to school among adolescents were identified, even after adjusting for distance to school and urbanicity.


Assuntos
Ciclismo/estatística & dados numéricos , Planejamento Ambiental/estatística & dados numéricos , Atividade Motora , Instituições Acadêmicas/estatística & dados numéricos , Meio Social , Meios de Transporte/estatística & dados numéricos , Caminhada , Adolescente , California , Criança , Feminino , Promoção da Saúde , Humanos , Masculino , Marketing Social , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...